Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Sci Rep ; 14(1): 9092, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643302

RESUMEN

Vascular and neural structures of the retina can be visualized non-invasively and used to predict ocular and systemic pathologies. We set out to evaluate the association of hemoglobin (Hb) levels within the national reference interval with retinal vascular caliber, optical coherence tomography (OCT) and visual field (VF) parameters in the Northern Finland 1966 Birth Cohort (n = 2319, 42.1% male, average age 47 years). The studied parameters were evaluated in Hb quintiles and multivariable linear regression models. The lowest Hb quintile of both sexes presented the narrowest central retinal vein equivalent (CRVE) and the healthiest cardiometabolic profile compared to the other Hb quintiles. In the regression models, CRVE associated positively with Hb levels in both sexes, (Bmales = 0.068 [0.001; 0.135], Bfemales = 0.087 [0.033; 0.140]), after being adjusted for key cardiometabolic and inflammatory parameters, smoking status, and fellow vessel caliber. No statistically significant associations of Hb levels with central retinal artery equivalent, OCT or VF parameters were detected. In conclusion, Hb levels were positively and specifically associated with CRVE, indicating that Hb levels are an independent factor affecting CRVE and the effect is in parallel with established risk factors for cardiometabolic diseases.


Asunto(s)
Enfermedades Cardiovasculares , Oftalmopatías , Persona de Mediana Edad , Femenino , Humanos , Masculino , Cohorte de Nacimiento , Oftalmopatías/patología , Retina/diagnóstico por imagen , Enfermedades Cardiovasculares/patología , Hemoglobinas , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/patología
2.
Cancer Res ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38471099

RESUMEN

The tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) plays a key role in tumor progression and response to therapy. The dense PDAC stroma causes hypovascularity, which leads to hypoxia. Here, we showed that hypoxia drives long-lasting epithelial-mesenchymal transition (EMT) in PDAC primarily through a positive-feedback histone methylation-MAPK signaling axis. Transformed cells preferentially underwent EMT in hypoxic tumor regions in multiple model systems. Hypoxia drove a cell-autonomous EMT in PDAC cells which, unlike EMT in response to growth factors, could last for weeks. Furthermore, hypoxia reduced histone demethylase KDM2A activity, suppressed PP2 family phosphatase expression, and activated MAPKs to post-translationally stabilize histone methyltransferase NSD2, leading to an H3K36me2-dependent EMT in which hypoxia-inducible factors played only a supporting role. Hypoxia-driven EMT could be antagonized in vivo by combinations of MAPK inhibitors. Collectively, these results suggest hypoxia promotes durable EMT in PDAC by inducing a histone methylation-MAPK axis that can be effectively targeted with multi-drug therapies, providing a potential strategy for overcoming chemoresistance.

3.
Pflugers Arch ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38396259

RESUMEN

Transmembrane prolyl 4-hydroxylase (P4H-TM) is an enigmatic enzyme whose cellular function and primary substrate remain to be identified. Its loss-of-function mutations cause a severe neurological HIDEA syndrome with hypotonia, intellectual disability, dysautonomia and hypoventilation. Previously, P4H-TM deficiency in mice was associated with reduced atherogenesis and lower serum triglyceride levels. Here, we characterized the glucose and lipid metabolism of P4h-tm-/- mice in physiological and tissue analyses. P4h-tm-/- mice showed variations in 24-h oscillations of energy expenditure, VO2 and VCO2 and locomotor activity compared to wild-type (WT) mice. Their rearing activity was reduced, and they showed significant muscle weakness and compromised coordination. Sedated P4h-tm-/- mice had better glucose tolerance, lower fasting insulin levels, higher fasting lactate levels and lower fasting free fatty acid levels compared to WT. These alterations were not present in conscious P4h-tm-/- mice. Fasted P4h-tm-/- mice presented with faster hepatic glycogenolysis. The respiratory rate of conscious P4h-tm-/- mice was significantly lower compared to the WT, the decrease being further exacerbated by sedation and associated with acidosis and a reduced ventilatory response to both hypoxia and hypercapnia. P4H-TM deficiency in mice is associated with alterations in whole-body energy metabolism, day-night rhythm of activity, glucose homeostasis and neuromuscular and respiratory functions. Although the underlying mechanism(s) are not yet fully understood, the phenotype appears to have neurological origins, controlled by brain and central nervous system circuits. The phenotype of P4h-tm-/- mice recapitulates some of the symptoms of HIDEA patients, making this mouse model a valuable tool to study and develop tailored therapies.

4.
Nat Cell Biol ; 25(10): 1478-1494, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37749225

RESUMEN

All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1.


Asunto(s)
Histonas , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Leucina/metabolismo , Histonas/genética , Histonas/metabolismo , Hierro/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Desmetilación
5.
Am J Physiol Heart Circ Physiol ; 325(4): H629-H634, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37566112

RESUMEN

The aim of this study was to cross-sectionally examine whether hemoglobin (Hb) levels within the normal variation associate with heart rate variability (HRV) measures and baroreflex sensitivity (BRS). The study population included 733 Finnish subjects of the OPERA cohort (aged 41-59 yr, 53% males, 51.7% treated for hypertension) of whom HRV was measured from a standardized 45-min period and whose Hb levels were within the Finnish reference intervals. The low Hb tertile (mean Hb, 135 g/L) had an overall healthier metabolic profile compared with the high Hb tertile (mean Hb, 152 g/L). BRS was higher in the low Hb tertile compared with the high Hb tertile (P < 0.05). R-R interval (RRi) and standard deviation (SD) of the RRi (SDNN)index were the longest in the low Hb tertile regardless of posture. Of the spectral components of HRV, HF power was the highest in the low Hb tertile regardless of posture (P < 0.05). In a stepwise logistic regression model, BRS associated negatively with Hb levels after adjusting for covariates (B = -0.160 [-0.285; -0.035]). Similar associations were observed for SDNNindex when lying down (B = -0.105 [-0.207; -0.003]) and walking (B = -0.154 [-0.224; -0.083]). For HF power negative associations with Hb levels were observed when lying down (B = -0.110 [-0.180; -0.040]), sitting (B = -0.150 [-0.221; -0.079]), and in total analysis (B = -0.124 [-0.196; -0.053]). Overall, lower Hb levels associated independently with healthier cardiac autonomic function.NEW & NOTEWORTHY Heart rate variability (HRV) and baroreflex sensitivity (BRS), which can be measured noninvasively, can predict cardiac and metabolic diseases. Our findings show that within normal variation subjects with lower hemoglobin (Hb) levels have an overall healthier HRV profile and increased cardiac parasympathetic activity in middle age, independent of age, sex, smoking status, and key metabolic covariates. These findings support our previous findings that Hb levels can be used in assessing long-term risks for cardiometabolic diseases.


Asunto(s)
Barorreflejo , Hipertensión , Masculino , Persona de Mediana Edad , Humanos , Femenino , Frecuencia Cardíaca/fisiología , Barorreflejo/fisiología , Sistema Nervioso Autónomo , Corazón , Presión Sanguínea/fisiología
6.
Nat Metab ; 5(10): 1747-1764, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37605057

RESUMEN

T cell function and fate can be influenced by several metabolites: in some cases, acting through enzymatic inhibition of α-ketoglutarate-dependent dioxygenases, in others, through post-translational modification of lysines in important targets. We show here that glutarate, a product of amino acid catabolism, has the capacity to do both, and has potent effects on T cell function and differentiation. We found that glutarate exerts those effects both through α-ketoglutarate-dependent dioxygenase inhibition, and through direct regulation of T cell metabolism via glutarylation of the pyruvate dehydrogenase E2 subunit. Administration of diethyl glutarate, a cell-permeable form of glutarate, alters CD8+ T cell differentiation and increases cytotoxicity against target cells. In vivo administration of the compound is correlated with increased levels of both peripheral and intratumoural cytotoxic CD8+ T cells. These results demonstrate that glutarate is an important regulator of T cell metabolism and differentiation with a potential role in the improvement of T cell immunotherapy.


Asunto(s)
Fenómenos Bioquímicos , Linfocitos T CD8-positivos , Linfocitos T CD8-positivos/metabolismo , Glutaratos/metabolismo
7.
Scand Cardiovasc J ; 57(1): 2251730, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37641930

RESUMEN

Objectives. Remote ischemic preconditioning (RIPC) mitigates acute myocardial infarction (AMI). We hypothesized that RIPC reduces the size and severity of AMI and explored molecular mechanisms behind this phenomenon. Design. In two series of experiments, piglets underwent 60 min of the circumflex coronary artery occlusion, resulting in AMI. Piglets were randomly assigned into the RIPC groups (n = 7 + 7) and the control groups (n = 7 + 7). The RIPC groups underwent four 5-min hind limb ischemia-reperfusion cycles before AMI. In series I, the protective efficacy of RIPC was investigated by using biomarkers and echocardiography with a follow-up of 24 h. In series II, the heart of each piglet was harvested for TTC-staining to measure infarct size. Muscle biopsies were collected from the hind limb to explore molecular mechanisms of RIPC using qPCR and Western blot analysis. Results. The levels of CK-MBm (p = 0.032) and TnI (p = 0.007) were lower in the RIPC group. Left ventricular ejection fraction in the RIPC group was greater at the end of the follow-up. The myocardial infarct size in the RIPC group was smaller (p = 0.033). Western blot indicated HIF1α stabilization in the skeletal muscle of the RIPC group. PCR analyses showed upregulation of the HIF target mRNAs for glucose transporter (GLUT1), glucose transporter 4 (GLUT4), phosphofructokinase 1 (PFK1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), enolase 1 (ENO1), lactate dehydrogenase (LDHA) and endothelial nitric oxidate synthase (eNOS). Conclusions. Biochemical, physiologic, and histologic evidence confirms that RIPC decreases the size of AMI. The HIF pathway is likely involved in the mechanism of the RIPC.


Asunto(s)
Precondicionamiento Isquémico , Infarto del Miocardio , Animales , Porcinos , Volumen Sistólico , Función Ventricular Izquierda , Biomarcadores
8.
Haematologica ; 108(11): 3068-3085, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37317877

RESUMEN

Hereditary erythrocytosis is a rare hematologic disorder characterized by an excess of red blood cell production. Here we describe a European collaborative study involving a collection of 2,160 patients with erythrocytosis sequenced in ten different laboratories. We focused our study on the EGLN1 gene and identified 39 germline missense variants including one gene deletion in 47 probands. EGLN1 encodes the PHD2 prolyl 4-hydroxylase, a major inhibitor of hypoxia-inducible factor. We performed a comprehensive study to evaluate the causal role of the identified PHD2 variants: (i) in silico studies of localization, conservation, and deleterious effects; (ii) analysis of hematologic parameters of carriers identified in the UK Biobank; (iii) functional studies of the protein activity and stability; and (iv) a comprehensive study of PHD2 splicing. Altogether, these studies allowed the classification of 16 pathogenic or likely pathogenic mutants in a total of 48 patients and relatives. The in silico studies extended to the variants described in the literature showed that a minority of PHD2 variants can be classified as pathogenic (36/96), without any differences from the variants of unknown significance regarding the severity of the developed disease (hematologic parameters and complications). Here, we demonstrated the great value of federating laboratories working on such rare disorders in order to implement the criteria required for genetic classification, a strategy that should be extended to all hereditary hematologic diseases.


Asunto(s)
Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Policitemia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Mutación de Línea Germinal , Secuencia de Bases
9.
FEBS Lett ; 597(12): 1651-1666, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37235702

RESUMEN

Human phytanoyl-CoA dioxygenase domain-containing 1 (PHYHD1) is a 2-oxoglutarate (2OG)-dependent dioxygenase implicated in Alzheimer's disease, some cancers, and immune cell functions. The substrate, kinetic and inhibitory properties, function and subcellular localization of PHYHD1 are unknown. We used recombinant expression and enzymatic, biochemical, biophysical, cellular and microscopic assays for their determination. The apparent Km values of PHYHD1 for 2OG, Fe2+ and O2 were 27, 6 and > 200 µm, respectively. PHYHD1 activity was tested in the presence of 2OG analogues, and it was found to be inhibited by succinate and fumarate but not R-2-hydroxyglutarate, whereas citrate acted as an allosteric activator. PHYHD1 bound mRNA, but its catalytic activity was inhibited upon interaction. PHYHD1 was found both in the nucleus and cytoplasm. Interactome analyses linked PHYHD1 to cell division and RNA metabolism, while phenotype analyses linked it to carbohydrate metabolism. Thus, PHYHD1 is a potential novel oxygen sensor regulated by mRNA and citrate.


Asunto(s)
Dioxigenasas , ARN , Humanos , ARN/metabolismo , Dioxigenasas/metabolismo , Metabolismo de los Hidratos de Carbono , ARN Mensajero/genética , ARN Mensajero/metabolismo , Citratos , Oxígeno
10.
Cancer Discov ; 13(6): 1478-1497, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36847506

RESUMEN

Oncogenic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 occur in a wide range of cancers, including acute myeloid leukemia (AML) and glioma. Mutant IDH enzymes convert 2-oxoglutarate (2OG) to (R)-2-hydroxyglutarate [(R)-2HG], an oncometabolite that is hypothesized to promote cellular transformation by dysregulating 2OG-dependent enzymes. The only (R)-2HG target that has been convincingly shown to contribute to transformation by mutant IDH is the myeloid tumor suppressor TET2. However, there is ample evidence to suggest that (R)-2HG has other functionally relevant targets in IDH-mutant cancers. Here, we show that (R)-2HG inhibits KDM5 histone lysine demethylases and that this inhibition contributes to cellular transformation in IDH-mutant AML and IDH-mutant glioma. These studies provide the first evidence of a functional link between dysregulation of histone lysine methylation and transformation in IDH-mutant cancers. SIGNIFICANCE: Mutant IDH is known to induce histone hypermethylation. However, it is not known if this hypermethylation is functionally significant or is a bystander effect of (R)-2HG accumulation in IDH-mutant cells. Here, we provide evidence that KDM5 inhibition by (R)-2HG contributes to mutant IDH-mediated transformation in AML and glioma. This article is highlighted in the In This Issue feature, p. 1275.


Asunto(s)
Glioma , Leucemia Mieloide Aguda , Humanos , Histonas/metabolismo , Histona Demetilasas/genética , Mutación , Glutaratos , Transformación Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Glioma/genética , Metilación de ADN , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo
11.
Clin Genet ; 102(5): 444-450, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35908151

RESUMEN

HIDEA syndrome is caused by biallelic pathogenic variants in P4HTM. The phenotype is characterized by muscular and central hypotonia, hypoventilation including obstructive and central sleep apneas, intellectual disability, dysautonomia, epilepsy, eye abnormalities, and an increased tendency to develop respiratory distress during pneumonia. Here, we report six new patients with HIDEA syndrome caused by five different biallelic P4HTM variants, including three novel variants. We describe two Finnish enriched pathogenic P4HTM variants and demonstrate that these variants are embedded within founder haplotypes. We review the clinical data from all previously published patients with HIDEA and characterize all reported P4HTM pathogenic variants associated with HIDEA in silico. All known pathogenic variants in P4HTM result in either premature stop codons, an intragenic deletion, or amino acid changes that impact the active site or the overall stability of P4H-TM protein. In all cases, normal P4H-TM enzyme function is expected to be lost or severely decreased. This report expands knowledge of the genotypic and phenotypic spectrum of the disease.


Asunto(s)
Codón sin Sentido , Discapacidad Intelectual , Prolil Hidroxilasas/metabolismo , Aminoácidos , Dominio Catalítico , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Hipotonía Muscular/genética , Fenotipo , Síndrome
12.
J Biol Chem ; 298(8): 102222, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35787374

RESUMEN

Hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs 1-3) are druggable targets in renal anemia, where pan-HIF-P4H inhibitors induce an erythropoietic response. Preclinical data suggest that HIF-P4Hs could also be therapeutic targets for treating metabolic dysfunction, although the contributions of HIF-P4H isoenzymes in various tissues to the metabolic phenotype are inadequately understood. Here, we used mouse lines that were gene-deficient for HIF-P4Hs 1 to 3 and two preclinical pan-HIF-P4H inhibitors to study the contributions of these isoenzymes to the anthropometric and metabolic outcome and HIF response. We show both inhibitors induced a HIF response in wildtype white adipose tissue (WAT), liver, and skeletal muscle and alleviated metabolic dysfunction during a 6-week treatment period, but they did not alter healthy metabolism. Our data indicate that HIF-P4H-1 contributed especially to skeletal muscle and WAT metabolism and that its loss lowered body weight and serum cholesterol levels upon aging. In addition, we found HIF-P4H-3 had effects on the liver and WAT and its loss increased body weight, adiposity, liver weight and triglyceride levels, WAT inflammation, and cholesterol levels and resulted in hyperglycemia and insulin resistance, especially during aging. Finally, we demonstrate HIF-P4H-2 affected all tissues studied; its inhibition lowered body and liver weight and serum cholesterol levels and improved glucose tolerance. We found very few HIF target metabolic mRNAs were regulated by the inhibition of three isoenzymes, thus suggesting a potential for selective therapeutic tractability. Altogether, these data provide specifications for the future development of HIF-P4H inhibitors for the treatment of metabolic diseases.


Asunto(s)
Prolina Dioxigenasas del Factor Inducible por Hipoxia , Isoenzimas , Tejido Adiposo Blanco/metabolismo , Envejecimiento/metabolismo , Animales , Peso Corporal , Colesterol/sangre , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Resistencia a la Insulina , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Hígado/metabolismo , Ratones , Músculo Esquelético/metabolismo , Obesidad/metabolismo
13.
Cell Mol Life Sci ; 79(8): 432, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35852609

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia with limited treatment options affecting millions of people and the prevalence increasing with the aging population. The current knowledge on the role of the hypoxia/hypoxia-inducible factor (HIF) in the AD pathology is restricted and controversial. We hypothesized based on benefits of the genetic long-term inactivation of HIF prolyl 4-hydroxylase-2 (HIF-P4H-2) on metabolism, vasculature and inflammatory response that prolonged moderate activation of the hypoxia response could hinder AD pathology. We used an aging model to study potential spontaneous accumulation of amyloid-ß (Aß) in HIF-P4H-2-deficient mice and a transgenic APP/PSEN1 mouse model subjected to prolonged sustained environmental hypoxia (15% O2 for 6 weeks) at two different time points of the disease; at age of 4 and 10 months. In both settings, activation of the hypoxia response reduced brain protein aggregate levels and this associated with higher vascularity. In the senescent HIF-P4H-2-deficient mice metabolic reprogramming also contributed to less protein aggregates while in APP/PSEN1 mice lesser Aß associated additionally with hypoxia-mediated favorable responses to neuroinflammation and amyloid precursor protein processing. In conclusion, continuous, non-full-scale activation of the HIF pathway appears to mediate protection against neurodegeneration via several mechanisms and should be studied as a treatment option for AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Hipoxia/genética , Ratones , Ratones Transgénicos
14.
Physiol Rep ; 10(9): e15302, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35535947

RESUMEN

Maternal overweight/obesity contributes significantly to the development of gestational diabetes, which causes risks to both mother and fetus and is increasing sharply in prevalence worldwide. Since hypoxia reprograms energy metabolism and can alleviate weight gain, adiposity, insulin resistance (IR), and dyslipidemia, we set out to study the potential of sustained reduced ambient oxygen tension (15% O2 ) during pregnancy for alleviating the detrimental effects of diet-induced IR in C57Bl/6N mice, taking normal chow-fed and normoxia (21% O2 ) groups as controls. Our data show that hypoxic intervention reduced maternal weight gain, adiposity, and adipose tissue inflammation, and ameliorated maternal glucose metabolism and IR during gestation in diet-induced IR relative to normoxia. Where diet-induced IR reduced maternal hemoglobin and increased serum erythropoietin levels, hypoxic intervention compensated for these changes. Diet-induced IR reduced fetal growth in normoxia, and even more in hypoxia. Hypoxic intervention reduced liver weight gain during pregnancy in the dams with diet-induced IR, maternal liver weight being positively associated with embryo number. In case of diet-induced IR, the hypoxic intervention compromised placental energy metabolism and vascularization and increased end-pregnancy placental necrosis. Altogether, these data show that although hypoxic intervention mediates several beneficial effects on maternal metabolism, the combination of it with diet-induced IR is even more detrimental to the placental and fetal outcome than diet-induced IR alone.


Asunto(s)
Resistencia a la Insulina , Obesidad Materna , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Placenta/metabolismo , Embarazo , Aumento de Peso
15.
Sci Rep ; 12(1): 1686, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35102239

RESUMEN

Incidence of gestational diabetes (GDM) has increased rapidly. It poses significant risks for both mother and fetus affecting also negatively their longer-term metabolic heath. We asked whether early pregnancy maternal hemoglobin (Hb) levels, indicative for tissue oxygenation, would affect mother's metabolic health and fetal outcome. We assessed in FinnGeDi, a Finnish multicenter case-control study for GDM (n = 1828), association of maternal 1st trimester Hb levels with metabolic parameters and perinatal outcome. Our data show that mothers with GDM had higher Hb levels compared to controls (mean difference 1.746 g/L). Hb levels associated positively with pre-pregnancy body mass index (BMI), fasting glucose levels and glucose levels in a glucose tolerance test and systolic and diastolic blood pressure (bp) levels. When assessed in quartiles the highest Hb quartile had more chronic and gestational hypertension and the most adverse outcome of the metabolic parameters, dose-dependency seen in bp, BMI and glucose levels. In a multivariable regression analysis Hb levels remained an independently associated parameter for GDM after adjusting for key covariates (OR 1.019, 95% CI [1.007; 1.031]). In conclusion, higher maternal Hb levels within the normal variation are an independent risk factor for GDM in this population but have little effect on perinatal outcome.


Asunto(s)
Diabetes Gestacional/sangre , Hemoglobinas/análisis , Adulto , Biomarcadores/sangre , Glucemia/análisis , Presión Sanguínea , Índice de Masa Corporal , Estudios de Casos y Controles , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/epidemiología , Femenino , Finlandia/epidemiología , Humanos , Hipertensión Inducida en el Embarazo/sangre , Hipertensión Inducida en el Embarazo/diagnóstico , Hipertensión Inducida en el Embarazo/epidemiología , Embarazo , Resultado del Embarazo , Primer Trimestre del Embarazo/sangre , Medición de Riesgo , Factores de Riesgo , Regulación hacia Arriba , Adulto Joven
16.
J Biol Chem ; 298(3): 101721, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35151685

RESUMEN

Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the hypoxic induction of >300 genes required for survival and adaptation under oxygen deprivation. Inhibition of HIF-P4H-2 has been shown to be protective in focal cerebral ischemia rodent models, while that of HIF-P4H-1 has no effects and inactivation of HIF-P4H-3 has adverse effects. A transmembrane prolyl 4-hydroxylase (P4H-TM) is highly expressed in the brain and contributes to the regulation of HIF, but the outcome of its inhibition on stroke is yet unknown. To study this, we subjected WT and P4htm-/- mice to permanent middle cerebral artery occlusion (pMCAO). Lack of P4H-TM had no effect on lesion size following pMCAO, but increased inflammatory microgliosis and neutrophil infiltration was observed in the P4htm-/- cortex. Furthermore, both the permeability of blood brain barrier and ultrastructure of cerebral tight junctions were compromised in P4htm-/- mice. At the molecular level, P4H-TM deficiency led to increased expression of proinflammatory genes and robust activation of protein kinases in the cortex, while expression of tight junction proteins and the neuroprotective growth factors erythropoietin and vascular endothelial growth factor was reduced. Our data provide the first evidence that P4H-TM inactivation has no protective effect on infarct size and increases inflammatory microgliosis and neutrophil infiltration in the cortex at early stage after pMCAO. When considering HIF-P4H inhibitors as potential therapeutics in stroke, the current data support that isoenzyme-selective inhibitors that do not target P4H-TM or HIF-P4H-3 would be preferred.


Asunto(s)
Barrera Hematoencefálica , Infarto de la Arteria Cerebral Media , Enfermedades Neuroinflamatorias , Prolil Hidroxilasas , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/enzimología , Barrera Hematoencefálica/metabolismo , Permeabilidad de la Membrana Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Infarto de la Arteria Cerebral Media/enzimología , Infarto de la Arteria Cerebral Media/metabolismo , Ratones , Enfermedades Neuroinflamatorias/enzimología , Enfermedades Neuroinflamatorias/metabolismo , Permeabilidad , Prolil Hidroxilasas/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Accidente Cerebrovascular/enzimología , Accidente Cerebrovascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
J Mol Cell Cardiol ; 164: 148-155, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34919895

RESUMEN

AIMS: We have previously demonstrated protection against obesity, metabolic dysfunction, atherosclerosis and cardiac ischemia in a hypoxia-inducible factor (HIF) prolyl 4-hydroxylase-2 (Hif-p4h-2) deficient mouse line, attributing these protective effects to activation of the hypoxia response pathway in a normoxic environment. We intended here to find out whether the Hif-p4h-2 deficiency affects the cardiac health of these mice upon aging. METHODS AND RESULTS: When the Hif-p4h-2 deficient mice and their wild-type littermates were monitored during normal aging, the Hif-p4h-2 deficient mice had better preserved diastolic function than the wild type at one year of age and less cardiomyocyte hypertrophy at two years. On the mRNA level, downregulation of hypertrophy-associated genes was detected and shown to be associated with upregulation of Notch signaling, and especially of the Notch target gene and transcriptional repressor Hairy and enhancer-of-split-related basic helix-loop-helix (Hey2). Blocking of Notch signaling in cardiomyocytes isolated from Hif-p4h-2 deficient mice with a gamma-secretase inhibitor led to upregulation of the hypertrophy-associated genes. Also, targeting Hey2 in isolated wild-type rat neonatal cardiomyocytes with siRNA led to upregulation of hypertrophic genes and increased leucine incorporation indicative of increased protein synthesis and hypertrophy. Finally, oral treatment of wild-type mice with a small molecule inhibitor of HIF-P4Hs phenocopied the effects of Hif-p4h-2 deficiency with less cardiomyocyte hypertrophy, upregulation of Hey2 and downregulation of the hypertrophy-associated genes. CONCLUSIONS: These results indicate that activation of the hypoxia response pathway upregulates Notch signaling and its target Hey2 resulting in transcriptional repression of hypertrophy-associated genes and less cardiomyocyte hypertrophy. This is eventually associated with better preserved cardiac function upon aging. Activation of the hypoxia response pathway thus has therapeutic potential for combating age-induced cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Hipoxia , Transducción de Señal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Ratones , Ratas
18.
Sci Rep ; 11(1): 19936, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620927

RESUMEN

The aim of this study was to cross-sectionally and longitudinally examine whether higher hemoglobin (Hb) levels within the normal variation associate with key components of metabolic syndrome and total and cardiovascular mortality. The study included 967 Finnish subjects (age 40-59 years) followed for ≥ 20 years. The focus was on Hb levels, cardiovascular diseases (CVDs) and mortality rates. Higher Hb levels associated positively with key anthropometric and metabolic parameters at baseline. At the follow-up similar associations were seen in men. The highest Hb quartile showed higher leptin levels and lower adiponectin levels at baseline and follow-up (p < 0.05) and lower plasma ghrelin levels at baseline (p < 0.05). Higher baseline Hb levels associated independently with prevalence of type 2 diabetes at follow-up (p < 0.01). The highest Hb quartile associated with higher serum alanine aminotransferase levels (p < 0.001) and independently with increased risk for liver fat accumulation (OR 1.63 [1.03; 2.57]) at baseline. The highest Hb quartile showed increased risk for total (HR = 1.48 [1.01; 2.16]) and CVD-related mortality (HR = 2.08 [1.01; 4.29]). Higher Hb levels associated with an adverse metabolic profile, increased prevalence of key components of metabolic syndrome and higher risk for CVD-related and total mortality.


Asunto(s)
Enfermedades Cardiovasculares/mortalidad , Hemoglobinas/análisis , Síndrome Metabólico/epidemiología , Adiponectina/sangre , Adulto , Anciano , Causas de Muerte , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Finlandia/epidemiología , Estudios de Seguimiento , Ghrelina/sangre , Humanos , Leptina/sangre , Masculino , Persona de Mediana Edad , Factores de Riesgo
19.
Sci Adv ; 7(29)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34261659

RESUMEN

Activation of the hypoxia-inducible factor (HIF) pathway reprograms energy metabolism. Hemoglobin (Hb) is the main carrier of oxygen. Using its normal variation as a surrogate measure for hypoxia, we explored whether lower Hb levels could lead to healthier metabolic profiles in mice and humans (n = 7175) and used Mendelian randomization (MR) to evaluate potential causality (n = 173,480). The results showed evidence for lower Hb levels being associated with lower body mass index, better glucose tolerance and other metabolic profiles, lower inflammatory load, and blood pressure. Expression of the key HIF target genes SLC2A4 and Slc2a1 in skeletal muscle and adipose tissue, respectively, associated with systolic blood pressure in MR analyses and body weight, liver weight, and adiposity in mice. Last, manipulation of murine Hb levels mediated changes to key metabolic parameters. In conclusion, low-end normal Hb levels may be favorable for metabolic health involving mild chronic activation of the HIF response.


Asunto(s)
Hipoxia , Hígado , Animales , Hemoglobinas/genética , Hemoglobinas/metabolismo , Hipoxia/genética , Hígado/metabolismo , Metaboloma , Ratones , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...